设数列{a×q^(n-1)}是首项为a,公比为q的等比数列。
即a, aq, aq², aq³, ...aq^(n-1). (n=1,2,3,4...)
其前n项和为Sn
当q=1时,Sn=na. (n=1,2,3,....)
当q≠1时,Sn=a[(q^n)-1]/(q-1) (n=1,2,3,...)
二、等比数列性质①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,当q≠-1,或q=-1且k为奇数时,依次每 k项之和仍成等比数列。
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和
标签:[db:关键词]
版权声明:本站文章整理于互联网,如有侵权,请提供相关材料,发送邮件,一天内会进行删除
还木有评论哦,快来抢沙发吧~